
Spin-fluctuation theory of quasi-two-dimensional itinerant-electron ferromagnets

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys.: Condens. Matter 9 10359

(http://iopscience.iop.org/0953-8984/9/47/006)

Download details:

IP Address: 171.66.16.209

The article was downloaded on 14/05/2010 at 11:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/9/47
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter9 (1997) 10359–10372. Printed in the UK PII: S0953-8984(97)85832-8

Spin-fluctuation theory of quasi-two-dimensional
itinerant-electron ferromagnets

Yoshinori Takahashi
Faculty of Science, Himeji Institute of Technology, 1479-1 Kanaji, Kamigori, Ako-gun, 678-12
Japan

Received 8 July 1997

Abstract. A spin-fluctuation theory of quasi-two-dimensional itinerant-electron ferromagnets
is developed. On the basis of an anisotropic spin-fluctuation spectrum, interpolating between
two-dimensional (2D) and three-dimensional (3D) cases, we discuss the possibility of observing
two-dimensional critical behaviours as well as the crossover phenomena between the 2D and
3D limits.

1. Introduction

The magnetism of two-dimensional (2D) itinerant-electron systems has attracted lots of
interest since the discovery of cuprate superconductors with layered crystal structures. In
the course of the intensive investigations aimed at finding compounds with higher critical
temperature, as well as the studies exploring the origin of the superconductivity, a lot
of layered compounds were synthesized and studied experimentally. Among them, non-
cuprate ruthenate compounds were found to show various interesting properties, such as
superconductivity (Maenoet al 1994), Mott-insulating properties (Nakatsujiet al 1997)
and itinerant-electron magnetism (Caoet al 1997a, b). Ikedaet al (1997) quite recently
pointed out the possibility of the appearance of quasi-2D weak ferromagnetism in the
Sr3−xCaxRu2O7 system on the basis of magnetic measurements.

In the case of 3D weak itinerant-electron ferromagnets, the self-consistently
renormalized (SCR) theory of spin fluctuations (Moriya 1985) has been quite successful.
Quantitative comparisons between the theory and experiments have been made, and good
agreement has been found. For pure 2D systems, Hatatani and Moriya (1995) developed
the spin-fluctuation theory of itinerant ferromagnets by simply extending the SCR theory to
2D cases. They derived various critical behaviours for magnetic and transport properties.
For most materials, even for very good layered compounds, there exists a slight three
dimensionality. For instance, though actual layered compounds do order ferromagnetically
at finite temperature, pure 2D ferromagnets do not have finite critical temperatures.
Therefore, for practical comparisons between the theory and experiments for quasi-2D
systems, we need to know the conditions and the possibilities for observing 2D critical
behaviours as functions of the extent of the three dimensionality.

The purpose of the present paper is therefore to develop the spin-fluctuation theory
for quasi-2D itinerant-electron magnets rather than for pure 2D magnets. In the present
treatment we deal with 3D itinerant ferromagnets, having anisotropic spin-fluctuation
spectra. In this way we will be able to discuss the effects of the slight three dimensionality on
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the possibilities for observing 2D critical behaviours and the crossover phenomena between
2D-like and 3D-like extreme limits.

The present study is also based on the approach proposed by the present author
(Takahashi 1986) which is slightly different from the conventional SCR theory. It explicitly
takes into account the effects of the zero-point quantum spin fluctuations. From the
sum rule for the total spin-fluctuation amplitude I derived various interesting results and
consequences (Takahashi 1986, 1990, 1992, 1994, Takahashi and Sakai 1995). According
to the formalism, it is shown that the number of independent parameters describing the
spin-fluctuation spectrum are reduced, the consequences of which are supported by later
experimental investigations (Yoshimuraet al 1988a, b, Shimizuet al 1990, Nakabayashiet
al 1992). The approach is therefore particularly suited for the mutual comparison of the
theory and experiments.

The plan of the paper is as follows. In the next section, we derive the spin-fluctuation
spectrum for a free-electron-gas model with an anisotropic dispersion relation. On the
basis of the model the form of the anisotropic spin-fluctuation spectrum is derived. Then,
with the use of the spectrum, spin-fluctuation amplitudes are evaluated in section 3. In
section 4, magnetic properties of itinerant quasi-2D ferromagnets are derived, paying
particular attention on the effect of the dimensionality. The final section is devoted to
conclusions and discussion.

2. Spin-fluctuation spectra for quasi-two-dimensional itinerant ferromagnets

In order to see the effects of quasi-two dimensionality on the spin-fluctuation spectrum of
the system, we derive here the form of the non-interacting dynamical magnetic susceptibility
based on the free-electron-gas model with different effective masses for the electron motion
within the xy-plane and along thez-axis direction, respectively, i.e. with the following
dispersion relation:

εk = h̄2

2m
(k2
x + k2

y)+
h̄2

2m′
k2
z =

h̄2

2m
(k2
x + k2

y + ε2k2
z ) (ε2 = m/m′). (1)

The effective-mass ratio introduced above as the parameterε2 is assumed to be small for
quasi-2D systems. By changing the value ofε from 0 to 1 we can smoothly interpolate
between the 2D and 3D limits.

The frequency- and wave-vector-dependent dynamical magnetic susceptibility of the
system is evaluated by performing the following wave-vector summation over the wave-
vectork:

χ0
2d(q, ω − iδ) =

∑
k

f (εk+q)− f (εk)
ω − iδ + εk − εk+q (2)

wheref (ε) is the Fermi distribution function. Let us now introduce the new variablesK
andQ instead ofk andq by putting

Kx = kx Ky = ky Kz = εkz
Qx = qx Qy = qy Qz = εqz.

(3)

Then the conduction electron energy dispersion becomes isotropic with respect to the new
wave-vectorK and the energy difference in the denominator of (2) also has the same form
as that of the free-electron-gas model with the isotropic dispersion relation with the effective
massm as shown below:

εk+q − εk = h̄2

2m
(2kxqx + 2kyqy + q2

x + q2
y )+

h̄2

2m′
(2kzqz + q2

z )
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= h̄2

2m
(2K ·Q+Q2). (4)

Therefore if we perform the wave-vector summation in (2) in terms ofK instead ofk, we
obtain the following relation for the dynamical susceptibilities connecting the isotropic and
the anisotropic quasi-2D systems:

χ0
2d(q, ω) =

1

ε
χ0

3d(Q, ω)

whereχ0
3d is the dynamical magnetic susceptibility for the 3D non-interacting electron gas

system with the isotropic effective massm. The above relation is justified only for an
idealized electron gas model without the wave-vector cut-off. In actual cases for electrons
in a crystalline lattice, since there is a zone-boundary wave-vector, we have to take the effect
of the cut-off into consideration in dealing with the summation with respect toK. Then
the above relation will not actually hold and some modifications are needed. Nevertheless
from the above arguments we could still assume that theq-dependence can be represented
in terms of the function ofQ defined in (3). We therefore expect the following expansion
form for χ0

2d(q), similar to that forχ0
3d in the small-wave-vector and low-frequency region:

χ0
2d(q, ω) = χ0

2d(0, 0)− AQ2+ iCω/Q+ · · ·
= χ0

2d(0, 0)− A(q2
x + q2

y + ε2q2
z )+ iCω/(q2

x + q2
y + ε2q2

z )
1/2+ · · · . (5)

We see that theq2-coefficient of the wave-vector dependence of the static susceptibility is
reduced along thez-direction by a factor ofε2, while theω-linear coefficient is enhanced
by the factor 1/ε. Although the above expansion form is derived for the free-electron-gas
model, it will be extended to realistic situations with complex band structures. Then the
coefficientsA andC are evaluated on the basis of the details of the band structure of the
system.

3. Spin fluctuations in quasi-2D systems

Our present discussions, detailed below, are based on the following sum rule for the total
spin-fluctuation amplitude (Takahashi 1986), i.e. the total amplitude at each magnetic lattice
site: 〈

S2
〉
total =

〈
S2
〉
Z
+ 〈S2

〉
T

(6)

is conserved. The suffices Z and T on the right-hand side stand for the zero-point (quantum)
and the thermal components, respectively. In the absence of either an external or an internal
magnetic field, the above components are evaluated from〈

S2
〉
Z
= 3

N2
0

�

(2π)3
∑
q

∫ ∞
0

dω

π
Imχ(q)

〈
S2
〉
T
= 6

N2
0

�

(2π)3
∑
q

∫ ∞
0

dω

π
n(ω) Imχ(q)

(7)

in terms of the imaginary part of the dynamical susceptibility Imχ(q, ω), wheren(ω) is the
Bose factor defined by [exp(βω)−1]−1 (β = 1/kT ) andN0 is the number of magnetic ions
in the crystal. We have shown in the preceding section that the dynamical susceptibility for
the quasi-2D system has the same form as the 3D case upon making substitution (3). In the
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cases of near ferromagnetic and weakly ferromagnetic systems, because of the mutual intra-
atomic Coulomb correlation, the small-q, small-ω region of the dynamical susceptibility is
strongly enhanced and its imaginary part Imχ(q, ω) is represented in the form

Imχ(q, ω) = χ(q) ω0q

ω2+ 02
q

where the wave-vector-dependent static magnetic susceptibilityχ(q) and the damping
constant0q are given in terms ofQ in (3) by

χ(q) = χ

1+Q2/κ2
0q = 00Q(κ

2+Q2). (8)

The parameter00 and the correlation lengthκ−1 are shown to be related to the expansion
coefficients in (5) (Moriya 1985). The wave-vectorQ will be used in place ofq in the
following discussions. Following on from our previous investigations, we also introduce
two energetic scalesT0 and TA in order to characterize the spectral distribution of the
spin-fluctuation spectrum (8) in the frequency and wave-vector spaces, respectively, via

kT0 = 00q
3
B/(2π)

3 kTA = N0q
2
B/(2χκ

2). (9)

The magnetic susceptibility in units of(gµB)2 (with g = 2) and the temperature are, on the
other hand, represented in terms of the dimensionless reciprocal magnetic susceptibilityy

and the reduced temperaturet defined by

y = N0/2kTAχ t = T/T0. (10)

Theny is related to the magnetizationσ per magnetic ion in units ofµB and the external
magnetic fieldH by

y = 1

kTA

σ

h
(h = 2µBH). (11)

In subsequent subsections thet- and/ory-dependence of the spin-fluctuation amplitudes
will be derived. With these results, in conjunction with the use of the sum rule (6), we can
derive the equation governing thet- andσ -dependences of the reciprocal susceptibilityy.

3.1. The thermal fluctuation amplitude

The thermal amplitude has botht- and y-dependence. Because of the Bose factor, it is
particularly sensitive to the low-energy form of the spin-fluctuation spectrum. The integ-
ration with respect toω in (7) is easily performed, giving〈
S2
〉
T
= 6

N2
0

∑
q

χ(q)0q

∫ ∞
0

dω

π
n(ω)

ω

ω2+ 02
q

= 3T0

N0TA

∑
q

x[ln u− 1/2u− ψ(u)] (u = β0q/2π) (12)

whereψ(u) is the digamma function.
The effect of the dimensionality, which is of most interest in the present study, comes

into play from the wave-vector summation in (7). If we transform the summation into the
integral form, the integrand is regarded as the functionF(Q) which depends only on the
magnitudeQ. Note, however, that in evaluating such an integral over the whole Brillouin
zone ofq, there appears aQ-dependent phase volume because of the restriction on the
range of thez-componentQz. Since

Q2
z = Q2 cos2 θ 6 ε2q2

B
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the q-summation ofF(Q) can be represented by∑
q

F(Q) = 1

ε

∑
Q

F(Q) = 1

ε

�

(2π)3

∫
d3Q F(Q)

and

1

ε

∫
d3Q F(Q) = 4πq3

B

ε

∫ ε

0
x2 dx F(Q)+ 4πq3

B

∫ 1

ε

x dx F(Q) (13)

wherex is the reduced wave-vector,Q/qB , defined with respect to the zone-boundary vector
qB given by the condition∑

Q

1= 4π�q3
B

(2π)3

{
1

2
(1− ε2)+ ε

2

3

}
= N0. (14)

After performing theQ-summation according to (13), we see that the thermal spin-
fluctuation amplitude can be represented as the sum of two contributions:〈

S2
〉
T
= 3dT

T0

TA
tT (y, t) = 3dT

T0

TA
t {T3d(η, τ )+ T2d(η, τ )}

T3d(η, τ ) = 1

τ

∫ 1

0
z3 dz [ln v − 1/2v − ψ(v)]

T2d(η, τ ) = 1

τ

∫ 1/ε

1
z2 dz [ln v − 1/2v − ψ(v)]

v = z(η + z2)/τ dT = 6

3− ε2

(15)

where we have introduced the new integration variablez which stands forx/ε. From the
z-dependence (and therefore theq-dependence) of the phase volume, it is easy to see that
T3d and T2d represent the amplitudes arising from 3D-like and 2D-like spin fluctuations,
respectively. For smallε, both of the quantities depend universally ony and t throughη
andτ defined by

η = y/ε2 τ = t/ε3. (16)

We show below how their relative importance will change according to the magnitude of
the dimensionality parameterε at the critical point.

The thermal amplitude at the critical pointt = tc is evaluated by assumingy = 0. The
2D contributionT2d(0, τ ) is explicitly given by

T2d(0, τ ) = 1

3

∫ 1/ε3τ

1/τ
dw

[
lnw − 1

2w
− ψ(w)

]
= 1

3
{G(1/tc)−G(1/τc)} (17)

whereG(x) is the function given in terms of the Gamma function0(x) by

G(x) = (x − 1/2) ln x − x − ln0(x)+ ln
√

2π

which behaves as−1/(12x) for largex. On the other hand, the 3D contributionT3d(0, τ )
is represented in the following integral form:

T3d(0, τ ) = τ 1/3
∫ 1/τ 1/3

0
z3 dz

[
ln z3− 1

2z3
− ψ(z3)

]
. (18)
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In the limit of largeτc = tc/ε3, the following limiting behaviours are obtained:

T3d(0, τc) ' 1

2

T2d(0, τc) ' 1

6
ln(τc).

(19)

In this limit the 2D fluctuations dominate over the 3D ones, and the system behaves like a
2D system. In the opposite limit ofτc � 1, on the other hand,

T3d(0, τc) ' cτ 1/3
c

T2d(0, τc) ' τc/36 (20)

c = 3−3/2(2π)−1/30(4/3)ζ(4/3) = 0.3353. . .

hold and the SCR result for the 3D case is recovered. It is interesting to note here that
the relative importance of the 2D and the 3D fluctuation amplitudes is governed by the
magnitude of the single parameterτc. In order to see the effect of the dimensionality
for generalτc-values, we show in figure 1 the results of numerical calculations for the
amplitudes at the critical pointtc. We see from the figure that the 2D and 3D contributions
are comparable even around the largeτc-value of about 102.

10
-3

10
-2

10
-1

1/τc

0.0

0.5

1.0

1.5

T
(0

,τ
c)

from T2D

from T3D

Total

Figure 1. The thermal spin-fluctuation amplitude att = tc as a function of 1/τc. The solid,
dashed and chain curves represent the total, 2D and 3D fluctuation amplitudes, respectively.

3.2. The quantum fluctuation amplitude

As was pointed out by Takahashi (1986), though the quantum spin-fluctuation amplitude
defined in (7) does not have an explicit temperature dependence, we need to take it account
through that of the magnetic susceptibility or its dependence ony, whose derivation is the
object of the present subsection. In the same way as that of the thermal amplitude, the
frequency integration of the quantum amplitude in (7) can be performed as follows:〈
S2
〉
Z
(y) = 3

N2
0

∑
q

χ(q)0q

∫ ωc

0

dω

π

ω

ω2+ 02
q
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= 3T0

2N0TA

∑
q

x{ln[ω̃2
c + x2(y + x2)2] − 2 ln[x(y + x2)]}

= 〈
S2
〉
Z
(0)− 18T0

(3− ε2)TA

{
1

ε

∫ ε

0
x3 dx +

∫ 1

ε

x2 dx

}
×
[

ln

(
1+ x

2y(1+ 2x2y)

ω̃2
c + x6

)
− 2 ln

(
1+ y

x2

)]
. (21)

We have introduced above the upper cut-off frequencyωc (and ω̃c = ωc/2πkT0), which
may depend on the reduced wave-vectorx. Since we are dealing with the case with small
y-values, the above expression can be expanded as follows:〈

S2
〉
Z
(y) = 〈S2

〉
Z
(0)− 3dZ

T0

TA
y + · · ·

dZ = 6(1− ε/2)
3− ε2

.

(22)

The coefficientdZ is almost independent ofωc, while the amplitude
〈
S2
〉
Z
(0) at t = tc

depends on its details. According to the space dimensiond, the value ofdZ is given by

dZ =
{

2 for d = 2 (ε = 0)

3/2 for d = 3 (ε = 1).
(23)

4. Magnetic properties of quasi-2D systems

In the presence of the static uniform magnetizationσ per magnetic atom, the fluctuation
amplitudes become anisotropic, and the total amplitude has to be represented as the sum of
all the contributions from the longitudinal fluctuations, transverse fluctuations and the static
uniform magnetization. With the use of (15) and (22), the sum rule (6) is written in the
following form:〈
S2
〉
T
(0, tc) =

〈
S2
〉
total−

〈
δS2

〉
Z
(0) = σ 2

4
− dZ T0

TA
(2y + yz)+ dT T0

TA
t{2T (y, t)+ T (yz, t)}

(24)

whereδS is the spin-deviation operator,S − 〈S〉, andyz is the reduced longitudinal recip-
rocal magnetic susceptibility,(∂σ/∂h)−1, given by

yz = y + σ dy

dσ
. (25)

In deriving (24) we take into account the presence of the two independent degrees of freedom
(in thex- andy-axis directions, for example) for the transverse spin fluctuations. From the
requirement of the rotational invariance in spin space, uniform limits of the reciprocal
magnetic susceptibility are assumed to be given byy in (11) andyz for the transverse and
the longitudinal components, respectively. The magnetization process and the temperature
dependence of the magnetic susceptibility are discussed in the following on the basis of
equation (24).

4.1. Magnetization processes

In the ground state the thermal amplitudes vanish identically in (24). Therefore the magnet-
ization process is obtained by solving the following first-order differential equation fory
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with respect toσ :〈
S2
〉
T
(0, tc) =

〈
S2
〉
total−

〈
δS2

〉
Z
(0) = σ 2

4
− dZ T0

TA
(2y + yZ) = σ 2

4
− dZ T0

TA

(
3y + σ dy

dσ

)
.

(26)

It is easy to find the following solution fory:

y = − 1

3dZ

TA

T0

〈
S2
〉
T
(0, tc)+ 1

20dZ

TA

T0
σ 2. (27)

From the conditiony = 0 in the absence of an external magnetic field, the saturation
momentσs in the ground state is given in each of the 2D and 3D limits by

σ 2
s

4
= 5

3

〈
S2
〉
T
(0, tc) = 5dT

T0

TA
tcT (0, tc) =


5T0

3TA
tc(3+ ln τc) for τc � 1

15T0

TA
ctcτ

1/3
c for τc � 1.

(28)

Sincey is related toσ andh by (11), we see from (27) that the magnetization process of
the system in the ground state is given by

h = − 1

3dZ

T 2
A

T0

〈
S2
〉
T
(0, tc)σ + 1

20dZ

T 2
A

T0
σ 3.

Now by comparing the result with the definition of the fourth-order coefficient of the
magnetic free energy with respect toσ , h = F̄1σ(−σ 2

s + σ 2)/8, we obtain

F̄1 = 2

5dZ

T 2
A

T0
. (29)

The value ofF̄1 is related to the slope of the Arrott plot (theσ 2 versush/σ plot). Depend-
ing on the value ofε, the value ofF̄1 slightly changes its magnitude from 4kT 2

A/15T0 for
3D cases tokT 2

A/5T0 for 2D cases.
At finite temperature, the thermal spin-fluctuation amplitude change itsη-dependence

as η increases in magnitude as shown below. It follows then that we expect crossover
phenomena between 3D and 2D critical behaviours of the magnetization process as we
increase the value ofσ . As a typical example, let us discuss below the magnetization
process at the critical pointt = tc in the 2D limit τc � 1.

Whenσ is very small andη � 1 is satisfied, we obtain

T3d(η, τ ) ' T3d(0, τ )− π
4
√
η

T2d(η, τ ) ' T2d(0, τ )− 1

4
(1− ε)η.

(30)

In this limit the 3D fluctuations are dominant and the magnetization process is determined
by solving

σ 2

4
= dT πT0

4TA
tc(2
√
η +√ηz). (31)

The solution is given in the formη = ηcσ 4 with the coefficient

ηc =
[

1

(2+√5)πdT

TA

tcT0

]2

. (32)
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With the use of (28) the above solution can also be represented as follows:

η =
[

20(3+ ln τc)

3(2+√5)πdT

]2(
σ

σs

)4

. (33)

Because of the conditionη � 1, the validity of the above expressions is limited to the
following region ofσ :(

σ

σs

)2

� 3π(2+√5)dT
20(3+ ln τc)

. (34)

With increasingτc, the dominant 3D critical region of(σ/σs) decreases proportionally to
(ln τc)−1/2.

On the other hand, as we increaseσ and if the conditionη � 1 is satisfied, we will go
over into the region where the 2D fluctuation is dominant, where they-dependences of the
thermal amplitudes are well represented by

T3d(η, τ ) ' T3d(0, τ )− 1

6η

T2d(η, τ ) ' T2d(0, τ )− 1

4
ln η.

(35)

The magnetization process in this case has to be determined by solving

TA

T0

σ 2

4
= dZε2(2η + ηz)+ 1

4
dT tc(2 lnη + ln ηz). (36)

The second logarithmic dependence comes from the effect of the 2D fluctuations. If the
second term in the right-hand side dominates over the first one whenε2 is very small, we
are led to the following peculiar magnetization process:

η ' exp

(
1

3dT tc

TA

T0
σ 2

)
(37)

specific to pure 2D itinerant ferromagnets. As we further increaseσ , y (or η) will finally
showσ 2-linear dependence, showing good linearity when plotted in the form of an Arrott
plot.

On the other hand, whenε2 is of the same order of magnitude as or larger thantc,
the above behaviour (37) is not observed. In that case after the 3D critical behaviour for
very smallσ , the firstη-linear (ηz-linear) term in the right-hand side of (36) soon becomes
significant, andσ 2-linear behaviour ofy immediately follows as we increaseσ . We expect
that the latter case will be realized for actual situations because of the very lowtc-values for
most itinerant-electron weak ferromagnets. The only effect observed which is a 2D effect
is the narrowing of the 3D critical region of theσ 4-dependence ofy at the critical point.

4.2. The temperature dependence of the magnetic susceptibility

From (24), the temperature dependence of the reciprocal magnetic susceptibilityy is
evaluated from

dZy = dT [tT (y, t)− tcT (0, tc)]. (38)

Because of the change of they-dependence of the thermal amplitude with increasingt , the
temperature dependence of the susceptibility also shows crossover behaviour depending on
its temperature range. The purpose of the present subsection is to discuss the crossover
phenomena of the magnetic susceptibility in the limit ofτc � 1.
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Near the critical point very close totc, if η � 1 is satisfied, the system behaves like a
3D one and thet-dependence ofy is determined by

ε2dZ

dT
η =

(
2

3
+ 1

6
ln τc

)
(t − tc)− πtc

4
√
η. (39)

We thus obtain the following temperature dependence:

η =
[

2(4+ ln τc)

3π

]2(
t

tc
− 1

)2

. (40)

Compared to the 3D cases, there appears an enhancement proportional to(ln τc)2 in the
coefficient of the(t − tc)2 term. As the result, from the conditionη � 1, the 3D critical
temperature range is reduced inversely proportionally to lnτc:

t − tc
tc
� 3π

2(4+ ln τc)
. (41)

As we increase the temperature and ifη > 1 is satisfied, the 2D fluctuations now become
dominant, and the temperature dependence ofy has now to be determined from

ε2dZ

dT
η = −tcT (0, tc)+ t

4
ln(τ 2/3/η). (42)

If the three dimensionalityε is much smaller thantc aroundη ' 1, theε2η-linear term in
the left-hand side is neglected compared to both of the terms in the right-hand side. Then
η will show the following temperature dependence (Hatatani and Moriya 1995):

η = τ 2/3 exp

(
−4tcT (0, tc)

t

)
. (43)

The above exponential dependence is limited to the temperature ranget 6 4tcT (0, tc) around
the critical point. Otherwise, because of the presence of theη-linear term in the left-hand
side, the Curie–Weiss- (CW-) like temperature dependence would immediately follow after
the 3D critical behaviour as we increase the temperaturet . Depending on the relative
magnitude ofε2 compared withtc, two different kinds of temperature dependence ofy will
therefore be expected, as summarized in table 1.

Table 1. The t-dependence of the reciprocal magnetic susceptibilityy.

Around the critical region Above the critical region

ε2 � tc (t − tc)2 ∼ τ2/3 exp[−4tcT (0, tc)/t ] CW-like
ε2 > tc (t − tc)2 CW-like

The upper case in table 1 is again not so easy to realize for most itinerant ferromagnets,
because of their very lowtc-values. For most cases, theη-linear term due to the effect of the
quantum amplitude soon becomes dominant and we cannot observe the peculiar temperature
dependence specific to the pure 2D fluctuations. In order to confirm the abovet-dependence
of y, we numerically solved (38) for severalε-values. The results are shown in figure 2.
We see that all of the curves show good Curie–Weiss-like temperature dependence above
tc except in the critical region aroundtc. As we decrease theε-value from 1, the slope of
the curve dy/dt at first gradually increases. Then, after having a maximum value of about
0.3, it decreases very slowly on further decreasingε.
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Figure 2. The temperature dependence of the reciprocal magnetic susceptibilityy. The solid
curve represents the result forε = 0.5, the dashed one forε = 0.1 and the chain one for
ε = 0.01.
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Figure 3. The ε-dependence of the derivative dy/dt when tc = 0.05 evaluated att = 4tc.

We show in figure 3 theε-dependence of the slope dy/dt . When the magnetic
susceptibility shows a temperature dependence according to the Curie–Weiss law, we can
define the effective paramagnetic momentσeff per magnetic ion by

χ = N0σ
2
eff

12k(T − Tc)
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Figure 4. The ratioσeff /σs as a function oftc for ε = 0.5 (solid curve), forε = 0.1 (dashed
curve) and forε = 0.05 (chain curve).

in our present units. From the slope of thet-linear part of they versust curve, we can
deduce the Curie constant from

dy

dt
= 6T0

TAσ
2
eff

= 3

10dT tcT (0, τc)

(
σs

σeff

)2

(44)

where we used (28) in deriving the last line. This means that the ratio(σeff /σs)
2 is related

to the slope of dy/dt , as well as the thermal spin-fluctuation amplitude atT = Tc, i.e.(
σeff

σs

)2

= 3

10dT tcT (0, τc)

(
dy

dt

)−1

. (45)

In the case of pure 3D cases, the slope dy/dt is the universal constant determined by solving
(38) with ε = 1 and is independent of any material constants. From (45) we see that the
ratio is uniquely determined by the single parametertc, which serves as the theoretical basis
for the revised Rhodes–Wohlfarth plot, i.e. theσ 2

eff/σ
2
s versustc plot (Takahashi 1986).

Equation (38) shows that the slopes ofy for quasi-2D systems in general depend also on
the dimensionality parameterε.

In order to see the dependence onε, we show in figure 4 the numerical estimates of
σeff/σs againsttc for several values ofε. For the sametc-value, smaller values of the ratio
σeff/σs are obtained with decreasingε. In the good 2D limit we also see from the figure
that the largeσeff/σs ratio is limited to cases with very smalltc-values.

5. Discussion

We have developed a spin-fluctuation theory for quasi-two-dimensional itinerant-electron
ferromagnets based on a model with an anisotropic spin-fluctuation spectrum. As a result
we were able to interpolate between the two extreme 2D and 3D limits in terms of the
anisotropy parameterε. Changing the value ofε, we have discussed the possibility of
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observing the 2D critical behaviours as well as the crossover phenomena between 2D and
3D behaviours.

We have shown that at the critical point the relative importance of the thermal
and the quantum fluctuation amplitudes is governed universally by the single parameter
τc = tc/ε

3 = Tc/ε
3T0. If τc � 1, 2D fluctuations dominate, while the 3D fluctuation

amplitude is dominant whenτc � 1. We have also discussed the crossover phenomena
between 2D and 3D critical behaviours. It was also shown that the condition for observing
pure 2D-like critical behaviours is very severe, especially for itinerant weak ferromagnets.
The main reason for this comes from the lowtc-values characteristic of weak itinerant
ferromagnets. We conclude therefore that quasi-2D itinerant weak ferromagnets have the
following magnetic properties.

(i) σ 2
s is proportional totc or tc ln τc depending on the value ofτc, rather than ont4/3c

as for 3D cases.
(ii) The formula for the slope of the Arrott plot (29), which relates its slope to the

spin-fluctuation spectrum, depends weakly on the dimensionality parameterε.
(iii) The 3D critical region decreases with increasing two dimensionality of the system.
(iv) For the same value oftc, smaller values of the ratioσeff/σs are obtained (see

figure 4). Compared to 3D case, the largeσeff/σs ratio is limited to a narrower region with
small tc-values.

The critical behaviours characteristic of pure 2D systems will only be observed when
the two dimensionality is very good and the conditionε2� tc is satisfied. In this sense, the
recent experiments on the layered quasi-2D ferromagnets by Ikedaet al, where no definite
2D critical behaviours have been observed, may be reasonable. The nearly complete absence
of critical magnetization behaviour may also be consistent with our conclusions.

Note that our present conclusion on the difficulty of observing pure 2D critical
behaviours is specific to itinerant-electron weak ferromagnets, for which only the fluctuations
in a small portion of theq-space are responsible for the thermal spin-fluctuation amplitude.
Because these fluctuations with smallq-values have long-range spatial correlations and
if they are greater than the interlayer distance of layered compounds, for instance, the
systems will behave as 3D magnets rather than 2D magnets. Our present study shows that
quasi-2D itinerant weak magnets will behave qualitatively like 3D magnets. Nevertheless,
to make quantitative comparisons between theory and experiments, we have to take into
account various renormalization effects of parameters due to the effects of the dimensionality
parameterε. Analyses have therefore to be done on the basis of the theory taking into
account the effects of the 3D and 2D spin fluctuations simultaneously.
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